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Long-time properties of random walks with a single trap
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For both Brownian and enhanced random walks, we can distinguish between systems where the random
walker returns to the origin with certainty, and where the random walker may escape from the trapping origin
with a probability strictly larger than zero. Examples for the first case are Brownian walks in one and two
dimensions, where it is known that the asymptotic probabilift) to be trapped at time¢—o behaves
differently from the asymptotic probabiliy(t) to pass through the origin in the same system without trap. We
also find this result for Ley flights in one dimension with the exponent of the characteristic functitnOn
the other hand, we compupgt) andf(t) for various systems with a nonzero escape probability. In particular,
we consider an anisotropic walk, which behaves Brownian in one direction and execuyeiidigs along the
second direction. For these cases we are able to provd (jaand p(t) follow the same inverse power law
asymptotically, the ratio given by the squared escape probabiBty063-651X98)01510-4

PACS numbd(s): 05.40:+j

I. INTRODUCTION we plot the probability of the first return to the origin as a
function of time, computed by an exact enumeration tech-
Many problems in chemical physics, such as recombinanique. In Sec. Ill we prove the basic finding of this work,
tion kinetics, exciton transfer, or the calculation of rate con-indicated by the results of Sec. I, i.e., the probability for first
stants for chemical reactions, are related to the concept thatraturn follows the same inverse power law as the probability
diffusing particle is trapped. The survival probability of such for free passage through the origirandom walk without
a particle(random walker and the time of its first arrival at trapping, if the asymptotic survival probability remains
a trap have been the subject of theoretical investigations cafPove zero. In Sec. IV we conclude and summarize.
ried out for various systems, almost throughout the whole
century[1-6]. Part of it deals with models where the trap- Il. FIRST RETURN TO THE ORIGIN

ping sites are uniformly distributed over the systgf 11] We consider an infinite system witth dimensions. The

An equivalent formulation is that there is one fixed trap a”d’[rap shall be placed at the origin of the system. To keep the
the initial position of the random walker is uniformly distrib- ¢omulation of the problem simple, we assume that the par-
uted. Due to the average over the initial coordinates, thigicie starts at the origin at time=0, and the trap is activated
situation is less complicated than the problem of a single tragnmediately thereafter. If there were no trap, the probability
and a random walker starting at a particular position. Also¢,; the particle to be at the origin at tinteshall be denoted

the calculation of the mean first passage titaed higher ¢y "\whereasf(t) means the probability for returning to
moments of the first passage tinteas a long tradition12]  yne origin for the first time. A subscript shall indicate the
(see Ref.[13] for early applications But in many cases gimension of the system where necessary. In lattice descrip-

these moments do not exist4]. , _ tion, the generating functions defined by
A multitude of traps is certainly present in bulk experi-

ments. During the last years, however, an increasing number *

of experiments has been done with individual representatives P(2) ::2 p(t)z', @
of the specied15-17. In this context, more knowledge t=0

about the influence of a single trap might be useful, which is

the subject of this work. In particular, we shall focus on __§ DA
systems where the random walker has a chance to avoid the F(2) &b (t)z 2
trap.

The paper is organized as follows: In Sec. Il we recapituprovide a convenient way to establish a relation betwieen
late some concepts of the theory of random walks, and applynd p. The summation is over integer values tpfwhich

them to three different systems, covering both Brownian angneans that the random walker moves at equal time steps.
enhanced diffusion: First, we model the Brownian case byyith p(0)=1 the relation betweeR andP is [6]

steps to the nearest neighbors ofiye, two, and three di-

mensions Second, we deal with lwy flights in one dimen- F(z)=1-1/P(z2), 3
sion. Third, we present a combination of the Brownian and

Lévy dynamics(two dimensions For each of the examples, whereas the recursion formula for the coefficient§ akads
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t—1 0

f(t)=p(t)—k§1 p(t—kK)f(k), t=1,2,.... (4

F(1) gives the probability of being trapped. F(1) is
strictly smaller than 1, the random walker has a firite.,
nonzerg probability to escape. Its survival probability is de-
fined by
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The generating function for free propagation is related to the ™ -3.5f

characteristic functiom (k) by [6] .

= ddk
2md J_, 1-2n(k)’

Brownian

P(2)= 6 o

5 . . . . . . .
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k being the Fourier transform variable of the space variable log,qt

X.
FIG. 1. Probabilities for free passage through the origift)

(upper curvel and first returnf (t) (lower curves, as functions of

time (arbitrary unit$ for simple random walks in one, two, and
For Brownian motion the probabilitp(t) is proportional  three dimensiongEgs. (4) and(12—(14)].

to t~%2. Using the formalism described above, we may

model the Brownian case by a Symmetric random walk WlthWIth |0(Z) the modified Bessel function of the first kind of

hops to the nearest neighbors only. On a simple cubic latticerder 0. Rearranging the sums and integrating ¢wee ob-

A. Brownian diffusion

such a walk has the characteristic function tain the even coefficients of the serieszin
1 @ (2t)!
NR=5 3 cosk. (7) P1(20)= 7z (12)
=1
In one dimensiorf(t) can be given explicitly. From Eq$3) i (20)! (2012 2
: ' 2t)= = = 2t)14,
(6), and(7) one finds P2(21) o 16KkIA(t—k)1* 4%t [Pa(20)]
(13
Fi(z)=1-1-7 (8 201 & 201
and p3(2t) = 36 kzo TERIEE (14)
1X3X5--|t—3] for one, two, and three dimensioh8]. All odd p(2t—1)
fi()= 2X4X 6 --(1—2) Xt © are zero. Obviouslyp4(t) are just the coefficients of an ex-
pansion of 1{/1— 2% [19]. Using Eq.(4), f(t) can be evalu-
for event, and 0 otherwise. Asymptotically, ated easily on the computer for the first some 1000 time
steps, which is enough to show the asymptotic beha¥iior.
fi(t—oo)~t~3? (10) 1). The plots ford=1 andd=2 present the well-known
analytical results of Eq(10) [20] and
for t even. In higher dimensions it is not possible to evaluate 1
P(z) by elementary integrals. That is, fd=2, Egs.(6) and fo(t—o0)~ . (15)
(7) give P,(z)=(2/7)K(z), the complete elliptical integral t(Int)
of the first kind. The usual procedure is an expansion of th
denominator in Eq(6) She latter follows from21]
d
1 % w fo(k)~1/nt, 16
P(2)= —=—3 J dt e’tH f e(zt/d)coskjdkj zft 2(K) (16)
(2m)° Jo =1\ J-a
2k1d the result of a Tauberian theorg22,6]. Ford=3 the slope
. (Z_t> of the double logarithmic plot—3) indicates the same
B °°d e zt d_ °°d i E 2d asymptotic power law as fat=1 or for free propagation in
“Jo tello d/|  Jo te &, k? ' three dimensions, i.e.,

(11 fa(t—o0)~t32 (17)
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0 1
i
RIA\ p (t)=ﬁ—y ~t~ W (20)
! m(at)t” '

-2r In a lattice description, the boundaries of the integral trans-
- form read= m instead of+« [see Eq(6)], which means that
5.3 the prefactor in Eq(20) will contain an incomplete gamma
) function converging to the complete one for large For
2 . some cases shown in Fig. 2, these integrals are given in the
a Appendix. The plots fof (t) are again obtained from E).

8”9 Contrary to the absorption case, the dependence isnex-
_T—s pected for a trap, as it is known that there is no escape for the

random walker fory=1 and a finite escape probability for

v<1[6], i.e., the survival probabilitgp(«)=1—-F(1) de-

pends ony [24]. We again find thap(t) and f(t) have the

N same asymptotic behaviert~Y?, when there is a finite es-

Levy in 1dim cape probability, i.e.;y<1. The casey=1 with p~1/t is

. . . ‘ . . . analogous to the simple random walk in two dimensions in

0 0.5 1 15 2 2.5 3 35 4 Fig. 1. In both cases the survival probability diminishes loga-
log;yt rithmically [Eq. (16)]. For y>1, Fig. 2 again shows a power

law for f(t—o0), with the exponent increasing in magnitude

for increasingy.

|
o
T

7t

-8

FIG. 2. Probabilities for free passage through the origift)
(dashed curvegsand first returnf(t) (solid curve$, as functions of
time (arbitrary unit$ for Lévy flights in one dimension withy ) )
=1 121 2 and 2[Egs.(4) and (A1)—(A5), a=1]. C. Anisotropic walks

The last example we want to deal with in particular is a
We shall prove below that in three dimensidifs) andp(t) random walk in two dimensions, which behaves as Brownian
have to follow the same power law, as there is a finite probin one direction and executes \neflights along the second
ability for escape. direction. We use the characteristic function

=1 —alky|”
B. Lévy flights N(kq,ky)=35(cosk;+e 3 2" (21
In the following we are interested in the following ques- and obtain
tion: How will the asymptotic power law forf(t) be
changed, if the steps of the random walk have a wide and te 2k (22)t exp(—ak})
slowly decaying size distribution, i.e., in the case of ay.e P(z)= E ZR f dtet dk €
flight? In continuous space, suchweflights are described (22)

by the characteristic functiof6,5]
By expansion, the last integral yields

INUHIET L (18)

with 0<y<<2 anda a positive constant. IR space this cor- J'”dk dZ2)t exp(—ak”) — ( A alar _)

responds to the following asymptotic behavior of the step Jo Z @nr &7

size distribution (23

h
A where
psteﬁ(lx|*>oo):|x|ﬁv (19) 1

X, “fte1dt 24
e = e 24

whereA is another constant. For one dimension there is some
related work by Zumofen and Klaft¢23]. They assume an IS the normalized incomplete gamma function, which tends
absorbing boundary at the origin, which would be identicalto unity for largex [25]. Next we carry out the first integral
to a system with a trap in the case of a simple random walKko arrive at
with steps to the nearest neighbors only. Fowy dlights,

however, it makes a difference whether the particle is al- Y . rl1+ 1)

lowed to jump over the origin or not. Interestingly, the sur- 1 (2k+1)1 22! Y 4 , 1
vival probability &(t) does not depend ow in the latter :; 2 20 2%+ k2 ahr y|alw?, v
case. This was shown forsly=<2, but is believed to be true (25)

for smallery as well[23]. For the case of a trap we clearly
find a dependence o (Fig. 2). The inverse Fourier trans- Rearranging the sums, we obtain the coefficients of the series
form of N (k;t) =exp(—atk|”) at x=0 gives in z
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FIG. 3. Probabilities for free passage through the origift)
(dashed curvegsand first returnf(t) (solid curve$, as functions of
time (arbitrary unit$ for anisotropic walks in two dimensions with

1 1 2

y=3, 3 2 1,2 and 2[Egs.(4), (26), and(27); a=1].

1
EIR ”?)
p(20)= 16 t12 mall
R 1
t 4k7/ 2akw?, —)
X (26)

&L (t=k)12(2k)!1(2k) Y7

for the even ones, and

1
N2 -1y
p(2t—1)= P i E

a1 271y

x 2

“E (t—k)1%(2k— 1)1 (2k— 1) (27)

a(2k—1)=”?, E}

for the odd, witht=1,2,... as above. Equatioi) is em-
ployed to obtainf(t). Both p(t) andf(t) are shown in Fig.
3 for a set of different values of. For v well below 2, the

IIl. ASYMPTOTICS FOR FINITE ESCAPE

As we saw in Sec. Il, the asymptotic probabilip(t
—o0) for return to the origin in a trapless system in general
follows an inverse power law. The exponent depends on the
dimension of the system and in case of enhanced diffusion
also on the exponent. There are two possibilities: The ran-
dom walker will return to the origin either with certainty, or
there is a nonzero probability to escape from the trap placed
at the origin. Increasing the dimension or decreasingay
change the system from zero escape to a finite escape prob-
ability. For the latter we shall now also prove tHgt— «)
follows an inverse power law, the exponents being equal for
p andf.

Let us assume that

p(t)=ct™ (28

asymptatically, withc a constant. For a finite escape prob-
ability, o has to be larger than 1. We regard the casenl

< 2 first. According to an Abelian theoreli6,6], the singu-
lar behavior of the generating function is described by

P(z)=P(1)+cl(1—a)(1—2)* 1 (29
in the neighborhood of=1. We define

F(1)—F(2)

1—7 (30)

9(2):= D, gZ:=
k=0

Expanding 1P(z) in Eq. (3) and using Eq(29), we obtain

cl(1-a)

W(l—Z)aiz. (31

9(2)=-

The singular behavior of this function can be related to its
coefficientsg, by means of a Tauberian theor¢@2,6]|

i o —cl(1-a)
o~

&9 PTG (32

and

Ctl*a

I PD a1y %

if the g, are strictly positive and a monotonic function lqf
at least from some value vbnwards. This is the case as the
coefficientsg, are the partial sums df(t):

g(z)zg1 f()(1-2)/(1-2)

asymptotics of both probabilities follow the same inverse

power law with an exponent 3+ (1/y). For y close to 2, a e = ”

more detailed investigation, not displayed in Fig. 2, shows :26 240 f(t+1)2k:k§=:0 Zkt;k;l f(t), (34
the following behavior within the computed time range: The

magnitude of the slope is still a little bit smaller thgn w0

+ (1/y) for p(t), but somewnhat larger fdi(t). For y=2 we 9= E f(t). (35)
expect the same logarithmic behavior as for the one- t=k+1

dimensional Ley flights with y=1 or the two-dimensional
Brownian walker.

Hence, asymptotically,
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f(t)zgt_gtﬂzW:[l_F(l)]ZCt_a (36)

follows the same power law g¥(t) and the ratio between

WOLFGANG PFLUEGL AND ROBERT J. SILBEY

both probabilities is given by the squared escape probability.

We continue to show that this relation also holds dcer 2.
For =2 the singular behavior d?(z) can be described

by

P(z)=P(1)+c(1-2)In(1—2) (37)

as the coefficients of an expansionziof this expression are
=c/t? for larget. Using the definition of Eqs(30) and (3),
we obtain

S I ! 38
9(2)= P(1)2 Ny (39
and the Tauberian theoref2,6] yields
' c
k§=:0 k= W Int (39)
and
C
0= P’ (40)

respectively. The last equation leads to our result of(B6).
like Eq. (33).

For (integer or nonintegera>2 the proof can be carried

PRE 58
we obtain
o t—1
9®(2)=2, f(t)(t—kZo zk)/u—z)
=D XD (1-kf(l+1), (47)
k=0 I=k+1
g@= > (t—k=1)f(1). (48)
t=k+2

As g(kz) is again a strictly positive sum and monotonickin
the Tauberian theoref22,6] yields

cl'(l-a)
(2)_ 2-a
9 TTE=—a)P(1)? 49
for nonintegera, and
c
(2) —
EFITENES 0

for a=3, respectively. Asg®;—g®=g,, we obtain the
result of Eq.(36) by taking twice the derivative of Eq$49)
and (50), respectively.

IV. CONCLUDING REMARKS

The most significant finding is the fact thigtt) is propor-

out in a way similar to the preceding two paragraphs. Weional top(t) for large times, ifF(1)<1. This is important

have to define a functiog!™ appropriately, so that

I'(1—-
g<")<z>=(—1>“%<1—z>a-l—“ (41
for 0<a—n<1, and
Cc
g(n)(Z)Z—m In(l—z) (42)

for a=n+1, with n a natural number. The lowest order
gM)(z) is identical withg(z) defined above. We shall dem-

onstrate the procedure for=2: Including the powers up to
the singularity,P(z) reads

P(z2)=P(1)—cy(1—-2z)+cl'(1—-a)(1-2)*"1 (43

for nonintegera, and
c(1-2)2

P(z2)=P(1)—c(1-2)— — In(1—-2z) (449

for =3, with ¢, a constant equal to
c1=P(1)2Y tf(t). (45)
t=1
From the definition
c1/P(1)%—g(z

1-z '

as the probabilityp(t) for return to the origin without the
need to account for the trap is always easier to be determined
than the first returrf(t). Moreover, Eq.(36) also gives the
ratio between both probabilities. The vertical distance be-
tween the straight asymptotes in the double logarithmic plots
equals 2 Inb(«) in all cases where the escape probability
® () +# 0. This can be checked by calculating the asymptotic
survival probability either numerically or, in some cases, us-
ing an analytical expression fdp(ec). That is, for the simple
cubic lattice @ () =0.659...[27], and for the anisotropic
walk, with y=1 anda=1,

P(1)=2In(3e™+ \3+9e’"— 12— 2)/(7V3)~1.80,
(51

which gives ®()~0.55. With regard to experiments, it
would be interesting to look for systems where the trap can
be switched off or on. Then both probabilities could be mea-
sured directly, yielding a method to determine the asymptotic
survival probability regardless of any short-time constants.
We want to point out that the same asymptotic power law
may arise from very different systems. That is, we have
f(t)~t~ 32 for three-dimensional Brownian motion, but also
in one dimension for Ley flights with y=2 or in our two-
dimensional model fory=1. In addition, there is another
possibility which differs from the systems just mentioned by
a vanishing probability for escape: the simple random walk
in one dimension. As for the dimensions with regard to
Brownian walks, there is also a choice between two different
values ofy for one-dimensional Dy flights, which yield the
same asymptotic exponent fbfin the range between 1 and
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1.5, but one of which is associated with zero escapeunder grant No. J01321-PHY. The work was also partially
whereas the other permits an escape. The limiting case is supported by the National Science Foundation.
=1, near which the slope dfis shallowest.
With regard to our anisotropic model we conclude from APPENDIX
the numerical evidence that the properties of such a random . . . -
walk/flight are simply an addition of both contributions,  1he following list containsp(t)=(1/2m) " ;A (k;t)dk
without any new features. In particular, the exponentfigs  [0f SOme integer and rational values pf
the sum of 1/2Brownian part and 1/ (Lévy direction. For

v close to 2 this exponent does not show up exactly in our y=2: erf(q-r—\/a—t), (A1)
plots, which is attributed to the fact that the asymptotes are 2\/mat
reached only very slowly in this region.

If there were a distribution of traps, the survival probabil- 1 1-e ™ A2
ity always goes to zero. In general the decay is governed by Y=< mat ' (A2)

a (stretched exponential 8,9]. But if the distribution is very

dilute, the assumption of a single trap might also be an apy= g
propriate description for an intermediate regime also in this
case. 3

In summary, we have shown how in the asymptotic time W
regime the probability of first return to the origin is related to

the probability of return without trapping in the case that the

survival probability remains above zero, which covers a

1/3 at) 2 1/3,— 723
erf(=3\/at)—2 —| e at|

(A3)

2 —
— [1—e ™1+ /7at)], (A4)

large variety of different systems. y=3:
= l "
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