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Long-time properties of random walks with a single trap

Wolfgang Pfluegl and Robert J. Silbey
Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
~Received 26 May 1998!

For both Brownian and enhanced random walks, we can distinguish between systems where the random
walker returns to the origin with certainty, and where the random walker may escape from the trapping origin
with a probability strictly larger than zero. Examples for the first case are Brownian walks in one and two
dimensions, where it is known that the asymptotic probabilityf (t) to be trapped at timet→` behaves
differently from the asymptotic probabilityp(t) to pass through the origin in the same system without trap. We
also find this result for Le´vy flights in one dimension with the exponent of the characteristic function>1. On
the other hand, we computep(t) and f (t) for various systems with a nonzero escape probability. In particular,
we consider an anisotropic walk, which behaves Brownian in one direction and executes Le´vy flights along the
second direction. For these cases we are able to prove thatf (t) andp(t) follow the same inverse power law
asymptotically, the ratio given by the squared escape probability.@S1063-651X~98!01510-4#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

Many problems in chemical physics, such as recombi
tion kinetics, exciton transfer, or the calculation of rate co
stants for chemical reactions, are related to the concept th
diffusing particle is trapped. The survival probability of su
a particle~random walker! and the time of its first arrival a
a trap have been the subject of theoretical investigations
ried out for various systems, almost throughout the wh
century@1–6#. Part of it deals with models where the tra
ping sites are uniformly distributed over the system@7–11#.
An equivalent formulation is that there is one fixed trap a
the initial position of the random walker is uniformly distrib
uted. Due to the average over the initial coordinates,
situation is less complicated than the problem of a single
and a random walker starting at a particular position. Al
the calculation of the mean first passage time~and higher
moments of the first passage time! has a long tradition@12#
~see Ref.@13# for early applications!. But in many cases
these moments do not exist@14#.

A multitude of traps is certainly present in bulk expe
ments. During the last years, however, an increasing num
of experiments has been done with individual representat
of the species@15–17#. In this context, more knowledg
about the influence of a single trap might be useful, which
the subject of this work. In particular, we shall focus
systems where the random walker has a chance to avoid
trap.

The paper is organized as follows: In Sec. II we recap
late some concepts of the theory of random walks, and ap
them to three different systems, covering both Brownian a
enhanced diffusion: First, we model the Brownian case
steps to the nearest neighbors only~one, two, and three di
mensions!. Second, we deal with Le´vy flights in one dimen-
sion. Third, we present a combination of the Brownian a
Lévy dynamics~two dimensions!. For each of the examples
PRE 581063-651X/98/58~4!/4128~6!/$15.00
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we plot the probability of the first return to the origin as
function of time, computed by an exact enumeration te
nique. In Sec. III we prove the basic finding of this wor
indicated by the results of Sec. II, i.e., the probability for fir
return follows the same inverse power law as the probab
for free passage through the origin~random walk without
trapping!, if the asymptotic survival probability remain
above zero. In Sec. IV we conclude and summarize.

II. FIRST RETURN TO THE ORIGIN

We consider an infinite system withd dimensions. The
trap shall be placed at the origin of the system. To keep
formulation of the problem simple, we assume that the p
ticle starts at the origin at timet50, and the trap is activated
immediately thereafter. If there were no trap, the probabi
for the particle to be at the origin at timet shall be denoted
by p(t), whereasf (t) means the probability for returning t
the origin for the first time. A subscript shall indicate th
dimension of the system where necessary. In lattice desc
tion, the generating functions defined by

P~z!ª(
t50

`

p~ t !zt, ~1!

F~z!ª(
t50

`

f ~ t !zt ~2!

provide a convenient way to establish a relation betweef
and p. The summation is over integer values oft, which
means that the random walker moves at equal time st
With p(0)51 the relation betweenF andP is @6#

F~z!5121/P~z!, ~3!

whereas the recursion formula for the coefficients ofF reads
4128 © 1998 The American Physical Society
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f ~ t !5p~ t !2 (
k51

t21

p~ t2k! f ~k!, t51,2,... . ~4!

F(1) gives the probability of being trapped. IfF(1) is
strictly smaller than 1, the random walker has a finite~i.e.,
nonzero! probability to escape. Its survival probability is d
fined by

F~ t !512 (
k51

t

f ~k!. ~5!

The generating function for free propagation is related to
characteristic functionl(k) by @6#

P~z!5
1

~2p!d E
2p

p ddk

12zl~k!
, ~6!

k being the Fourier transform variable of the space varia
x.

A. Brownian diffusion

For Brownian motion the probabilityp(t) is proportional
to t2d/2. Using the formalism described above, we m
model the Brownian case by a symmetric random walk w
hops to the nearest neighbors only. On a simple cubic lat
such a walk has the characteristic function

l~k!5
1

d (
j 51

d

coskj . ~7!

In one dimensionf (t) can be given explicitly. From Eqs.~3!,
~6!, and~7! one finds

F1~z!512A12z2 ~8!

and

f 1~ t !5
13335¯ut23u

23436¯~ t22!3t
~9!

for event, and 0 otherwise. Asymptotically,

f 1~ t→`!;t23/2 ~10!

for t even. In higher dimensions it is not possible to evalu
P(z) by elementary integrals. That is, ford52, Eqs.~6! and
~7! give P2(z)5(2/p)K(z), the complete elliptical integra
of the first kind. The usual procedure is an expansion of
denominator in Eq.~6!

P~z!5
1

~2p!d E
0

`

dt e2t)
j 51

d S E
2p

p

e~zt/d!coskjdkj D
5E

0

`

dt e2tF I 0S zt

d D Gd

5E
0

`

dt e2tF (
k50

` S zt

2dD 2k

k! 2
G d

,

~11!
e

le

h
e

e

e

with I 0(z) the modified Bessel function of the first kind o
order 0. Rearranging the sums and integrating overt we ob-
tain the even coefficients of the series inz,

p1~2t !5
~2t !!

4tt! 2 , ~12!

p2~2t !5 (
k50

t
~2t !!

16tk! 2~ t2k!! 2 5
~2t !! 2

42tt! 4 5@p1~2t !#2,

~13!

p3~2t !5
~2t !!

36t (
k50

t
~2k!!

~ t2k!! 2k! 4 ~14!

for one, two, and three dimensions@18#. All odd p(2t21)
are zero. Obviously,p1(t) are just the coefficients of an ex
pansion of 1/A12z2 @19#. Using Eq.~4!, f (t) can be evalu-
ated easily on the computer for the first some 1000 ti
steps, which is enough to show the asymptotic behavior~Fig.
1!. The plots ford51 and d52 present the well-known
analytical results of Eq.~10! @20# and

f 2~ t→`!;
1

t~ ln t !2 . ~15!

The latter follows from@21#

(
k5t

`

f 2~k!;1/ln t, ~16!

the result of a Tauberian theorem@22,6#. For d53 the slope
of the double logarithmic plot~2 3

2! indicates the same
asymptotic power law as ford51 or for free propagation in
three dimensions, i.e.,

f 3~ t→`!;t23/2. ~17!

FIG. 1. Probabilities for free passage through the origin,p(t)
~upper curves!, and first return,f (t) ~lower curves!, as functions of
time ~arbitrary units! for simple random walks in one, two, an
three dimensions@Eqs.~4! and ~12!–~14!#.
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We shall prove below that in three dimensionsf (t) andp(t)
have to follow the same power law, as there is a finite pr
ability for escape.

B. Lévy flights

In the following we are interested in the following que
tion: How will the asymptotic power law forf (t) be
changed, if the steps of the random walk have a wide
slowly decaying size distribution, i.e., in the case of a Le´vy
flight? In continuous space, such Le´vy flights are described
by the characteristic function@6,5#

l~k;t !5e2atukug, ~18!

with 0,g,2 anda a positive constant. Inx space this cor-
responds to the following asymptotic behavior of the s
size distribution

pstep~ uxu→`!.
A

uxug11 , ~19!

whereA is another constant. For one dimension there is so
related work by Zumofen and Klafter@23#. They assume an
absorbing boundary at the origin, which would be identi
to a system with a trap in the case of a simple random w
with steps to the nearest neighbors only. For Le´vy flights,
however, it makes a difference whether the particle is
lowed to jump over the origin or not. Interestingly, the su
vival probability F(t) does not depend ong in the latter
case. This was shown for 1<g<2, but is believed to be true
for smallerg as well @23#. For the case of a trap we clear
find a dependence ong ~Fig. 2!. The inverse Fourier trans
form of l(k;t)5exp(2atukug) at x50 gives

FIG. 2. Probabilities for free passage through the origin,p(t)
~dashed curves!, and first return,f (t) ~solid curves!, as functions of
time ~arbitrary units! for Lévy flights in one dimension withg
5

1
4 , 1

2,
2
3, 1, 3

2, and 2@Eqs.~4! and ~A1!–~A5!, a51#.
-

d

p

e

l
lk

l-

p1~ t !5

GS 11
1

g D
p~at!1/g ;t21/g. ~20!

In a lattice description, the boundaries of the integral tra
form read6p instead of6` @see Eq.~6!#, which means that
the prefactor in Eq.~20! will contain an incomplete gamma
function converging to the complete one for largeat. For
some cases shown in Fig. 2, these integrals are given in
Appendix. The plots forf (t) are again obtained from Eq.~4!.
Contrary to the absorption case, the dependence ong is ex-
pected for a trap, as it is known that there is no escape for
random walker forg>1 and a finite escape probability fo
g,1 @6#, i.e., the survival probabilityF(`)512F(1) de-
pends ong @24#. We again find thatp(t) and f (t) have the
same asymptotic behavior;t21/g, when there is a finite es
cape probability, i.e.,g,1. The caseg51 with p;1/t is
analogous to the simple random walk in two dimensions
Fig. 1. In both cases the survival probability diminishes log
rithmically @Eq. ~16!#. For g.1, Fig. 2 again shows a powe
law for f (t→`), with the exponent increasing in magnitud
for increasingg.

C. Anisotropic walks

The last example we want to deal with in particular is
random walk in two dimensions, which behaves as Brown
in one direction and executes Le´vy flights along the second
direction. We use the characteristic function

l~k1 ,k2!5 1
2 ~cosk11e2auk2ug!, ~21!

and obtain

P~z!5
1

p (
k50

`
z2k

42kk! 2 E
0

`

dt e2tt2kE
0

p

dk2 e~z/2!t exp~2ak2
g

!.

~22!

By expansion, the last integral yields

E
0

p

dk e~z/2!t exp~2akg!5(
l 50

` S z

2
t D l GS 11

1

g D
~al !1/gl !

ĝS alpg,
1

g D ,

~23!

where

ĝ~x,a!ª
1

G~a!
E

0

x

e2tta21dt ~24!

is the normalized incomplete gamma function, which ten
to unity for largex @25#. Next we carry out the first integra
to arrive at

P~z!5
1

p (
k50

`

(
l 50

`
~2k1 l !!z2k1 l

24k1 l l !k! 2

GS 11
1

g D
~al !1/g ĝS alpg,

1

g D .

~25!

Rearranging the sums, we obtain the coefficients of the se
in z,
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p~2t !5
~2t !!

16t
H 1

t! 2 1

GS 11
1

g D
pa1/g

3 (
k51

t 4kĝS 2akpg,
1

g D
~ t2k!! 2~2k!! ~2k!1/g

J ~26!

for the even ones, and

p~2t21!5

GS 11
1

g D
pa1/g

~2t21!!

42t21

3 (
k51

2t21 22k21ĝFa~2k21!pg,
1

gG
~ t2k!! 2~2k21!! ~2k21!1/g ~27!

for the odd, with t51,2,... as above. Equation~4! is em-
ployed to obtainf (t). Both p(t) and f (t) are shown in Fig.
3 for a set of different values ofg. For g well below 2, the
asymptotics of both probabilities follow the same inver
power law with an exponent; 1

2 1(1/g). For g close to 2, a
more detailed investigation, not displayed in Fig. 2, sho
the following behavior within the computed time range: T
magnitude of the slope is still a little bit smaller than1

2

1(1/g) for p(t), but somewhat larger forf (t). Forg52 we
expect the same logarithmic behavior as for the o
dimensional Le´vy flights with g51 or the two-dimensiona
Brownian walker.

FIG. 3. Probabilities for free passage through the origin,p(t)
~dashed curves!, and first return,f (t) ~solid curves!, as functions of
time ~arbitrary units! for anisotropic walks in two dimensions wit
g5

1
4 , 1

2,
2
3, 1, 3

2, and 2@Eqs.~4!, ~26!, and~27!; a51#.
s

-

III. ASYMPTOTICS FOR FINITE ESCAPE

As we saw in Sec. II, the asymptotic probabilityp(t
→`) for return to the origin in a trapless system in gene
follows an inverse power law. The exponent depends on
dimension of the system and in case of enhanced diffus
also on the exponentg. There are two possibilities: The ran
dom walker will return to the origin either with certainty, o
there is a nonzero probability to escape from the trap pla
at the origin. Increasing the dimension or decreasingg may
change the system from zero escape to a finite escape p
ability. For the latter we shall now also prove thatf (t→`)
follows an inverse power law, the exponents being equal
p and f.

Let us assume that

p~ t !.ct2a ~28!

asymptotically, withc a constant. For a finite escape pro
ability, a has to be larger than 1. We regard the case 1,a
,2 first. According to an Abelian theorem@26,6#, the singu-
lar behavior of the generating function is described by

P~z!.P~1!1cG~12a!~12z!a21 ~29!

in the neighborhood ofz51. We define

g~z!ª(
k50

`

gkz
k
ª

F~1!2F~z!

12z
. ~30!

Expanding 1/P(z) in Eq. ~3! and using Eq.~29!, we obtain

g~z!52
cG~12a!

P~1!2 ~12z!a22. ~31!

The singular behavior of this function can be related to
coefficientsgk by means of a Tauberian theorem@22,6#

(
k50

t

gk.
2cG~12a!

P~1!2G~32a!
t22a ~32!

and

gt.
ct12a

P~1!2~a21!
, ~33!

if the gk are strictly positive and a monotonic function ofk,
at least from some value oft onwards. This is the case as th
coefficientsgk are the partial sums off (t):

g~z!5(
t51

`

f ~ t !~12zt!/~12z!

5(
t50

`

(
k50

t

f ~ t11!zk5 (
k50

`

zk (
t5k11

`

f ~ t !, ~34!

gk5 (
t5k11

`

f ~ t !. ~35!

Hence, asymptotically,
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f ~ t !.gt2gt11.
ct2a

P~1!2 5@12F~1!#2ct2a ~36!

follows the same power law asp(t) and the ratio between
both probabilities is given by the squared escape probabi
We continue to show that this relation also holds fora>2.

For a52 the singular behavior ofP(z) can be described
by

P~z!.P~1!1c~12z!ln~12z! ~37!

as the coefficients of an expansion inz of this expression are
.c/t2 for large t. Using the definition of Eqs.~30! and ~3!,
we obtain

g~z!5
c

P~1!2 ln
1

12z
, ~38!

and the Tauberian theorem@22,6# yields

(
k50

t

gk.
c

P~1!2 ln t ~39!

and

gt.
c

P~1!2t
, ~40!

respectively. The last equation leads to our result of Eq.~36!
like Eq. ~33!.

For ~integer or noninteger! a.2 the proof can be carried
out in a way similar to the preceding two paragraphs. W
have to define a functiong(n) appropriately, so that

g~n!~z!5~21!n
cG~12a!

P~1!2 ~12z!a212n ~41!

for 0,a2n,1, and

g~n!~z!52
c

n! P~1!2 ln~12z! ~42!

for a5n11, with n a natural number. The lowest orde
g(1)(z) is identical withg(z) defined above. We shall dem
onstrate the procedure forn52: Including the powers up to
the singularity,P(z) reads

P~z!.P~1!2c1~12z!1cG~12a!~12z!a21 ~43!

for nonintegera, and

P~z!.P~1!2c1~12z!2
c~12z!2

2
ln~12z! ~44!

for a53, with c1 a constant equal to

c15P~1!2(
t51

`

t f ~ t !. ~45!

From the definition

g~2!~z!ª
c1 /P~1!22g~z!

12z
, ~46!
y.

e

we obtain

g~2!~z!5(
t51

`

f ~ t !S t2 (
k50

t21

zkD Y ~12z!

5 (
k50

`

zk (
l 5k11

`

~ l 2k! f ~ l 11!, ~47!

gk
~2!5 (

t5k12

`

~ t2k21! f ~ t !. ~48!

As gk
(2) is again a strictly positive sum and monotonic ink,

the Tauberian theorem@22,6# yields

gt
~2!5

cG~12a!

G~32a!P~1!2 t22a ~49!

for nonintegera, and

gt
~2!5

c

2P~1!2t
, ~50!

for a53, respectively. Asgt21
(2) 2gt

(2)5gt , we obtain the
result of Eq.~36! by taking twice the derivative of Eqs.~49!
and ~50!, respectively.

IV. CONCLUDING REMARKS

The most significant finding is the fact thatf (t) is propor-
tional to p(t) for large times, ifF(1),1. This is important
as the probabilityp(t) for return to the origin without the
need to account for the trap is always easier to be determ
than the first returnf (t). Moreover, Eq.~36! also gives the
ratio between both probabilities. The vertical distance
tween the straight asymptotes in the double logarithmic p
equals 2 lnF(`) in all cases where the escape probabil
F(`)Þ0. This can be checked by calculating the asympto
survival probability either numerically or, in some cases,
ing an analytical expression forF~`!. That is, for the simple
cubic lattice F(`)50.659... @27#, and for the anisotropic
walk, with g51 anda51,

P~1!52 ln~3ep1A319e2p212ep22!/~p) !'1.80,
~51!

which gives F(`)'0.55. With regard to experiments,
would be interesting to look for systems where the trap c
be switched off or on. Then both probabilities could be me
sured directly, yielding a method to determine the asympto
survival probability regardless of any short-time constant

We want to point out that the same asymptotic power l
may arise from very different systems. That is, we ha
f (t);t23/2 for three-dimensional Brownian motion, but als
in one dimension for Le´vy flights with g5 2

3 or in our two-
dimensional model forg51. In addition, there is anothe
possibility which differs from the systems just mentioned
a vanishing probability for escape: the simple random w
in one dimension. As for the dimensions with regard
Brownian walks, there is also a choice between two differ
values ofg for one-dimensional Le´vy flights, which yield the
same asymptotic exponent forf ~in the range between 1 an
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1.5!, but one of which is associated with zero esca
whereas the other permits an escape. The limiting caseg
51, near which the slope off is shallowest.

With regard to our anisotropic model we conclude fro
the numerical evidence that the properties of such a ran
walk/flight are simply an addition of both contribution
without any new features. In particular, the exponent forp is
the sum of 1/2~Brownian part! and 1/g ~Lévy direction!. For
g close to 2 this exponent does not show up exactly in
plots, which is attributed to the fact that the asymptotes
reached only very slowly in this region.

If there were a distribution of traps, the survival probab
ity always goes to zero. In general the decay is governed
a ~stretched! exponential@8,9#. But if the distribution is very
dilute, the assumption of a single trap might also be an
propriate description for an intermediate regime also in t
case.

In summary, we have shown how in the asymptotic tim
regime the probability of first return to the origin is related
the probability of return without trapping in the case that t
survival probability remains above zero, which covers
large variety of different systems.
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APPENDIX

The following list containsp(t)5(1/2p)*2p
p l(k;t)dk

for some integer and rational values ofg:

g52:
erf~pAat!

2Apat
, ~A1!

g51:
12e2pat

pat
, ~A2!

g5 2
3 :

3

4Ap~at!3/2 Ferf~p1/3Aat!22S at

p D 1/2

p1/3e2p2/3atG ,
~A3!

g5 1
2 :

2

pa2t2 @12e2Apat~11Apat!#, ~A4!

g5 1
4 :

24

pa4t4 F12e2A4patS 11A4 pat1
Ap

2
a2t21

A4 p3

6
a3t3D G .

~A5!
.
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